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Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS
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* model the wiring problem with
* a connected, undirected graph ¢ = (V,E),
* where V is the set of pins
» F is the set of possible interconnections between pairs of pins

* for each edge (u,v) € E, we have a weight w(u, v) specifying the cost
(amount of wire needed) to connect u and v

» wish to find an acyclic subset T € FE that connects all of the vertices
and whose total weight w(T ) is minimized.

*w(t) = Dumerw,v)



minimum-spanning-tree

* Since T is acyclic and connects all of the vertices, it must form a tree,
which we call a spanning tree since it “spans” the graph G.

* We call the problem of determining the tree T the
minimum-spanning-tree problem.
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two algorithms for solving the MST problem

 Kruskal’s algorithm
* Prim’s algorithm

* These two algorithms are greedy algorithms

* At each step of an algorithm, one of several possible choices must be
made (the choice that is the best at the moment)

e we can prove that certain greedy strategies do yield a spanning tree
with minimum weight.



Time complexity for solving MST

 Kruskal’s algorithm
* Prim’s algorithm

 using ordinary binary heaps
* runintime O(E IgV)
* using Fibonacci heaps

* Prim’s algorithm can be sped up torunintime O(E + VigV)
* is an improvement if [V| is much smaller than |E|



In the following ...

* First

* Learn a generic minimum-spanning-tree algorithm that grows a spanning
tree by adding one edge at a time

* Then
* Learn two ways to implement the generic algorithm
1. Kruskal
2. Prim



Growing a minimum spanning tree (assumption)

e Assume that we have a connected, undirected graph G = (V, E) with a
weight function w : E - R, and we wish to find a minimum spanning
tree for G.



Growing a minimum spanning tree (loop invariant)

* greedy strategy grows the minimum spanning tree one edge at a
time.

* The algorithm manages a set of edges A, maintaining the following
loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.



Growing a minimum spanning tree (safe edge)

* At each step, we determine an edge (u, v) that can be added to 4
without violating this invariant, in the sense that A U {(u, v)}is also a
subset of a minimum spanning tree. We call such an edge a safe edge

for A, since it can be safely added to A while maintaining the
invariant.



Cut and light edge

* Acut (S,V — S) of anundirected graph G = (V, E) is a partition of
/4

* We say that an edge (u,v) € E crosses the cut (S,V — §) if one of
its endpoints isin S and the otherisinV — §.

* We say that a cut respects a set A of edges if no edge in A crosses the
cut.

* An edge is a light edge crossing a cut if its weight is the minimum of
any edge crossing the cut
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Recognizing safe edges (Theorem 23.1)

*LletG = (V,E) beaconnected, undirected graph with a real-valued
weight function w defined on E.

* Let A be a subset of E that is included in some minimum spanning
tree for G,

* let (S,V — S§) be any cut of G that respects A, and let (u, v) be a
light edge crossing (S,V — S). Then, edge (u, v) is safe for ...
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GENERIC-MST

GENERIC-MST(G, w)

1 A« @

2. while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A
4. A< AU {(uv)}

5. return 4



* The loop in lines 2—4 of GENERIC-MST is executed | V| - 1 times as
each of the |V|-1 edges of a minimum spanning tree is successively
determined.

* Initially, when A = @, there are |V | trees in G4, and each iteration
reduces that number by 1.

* When the forest contains only a single tree, the algorithm
terminates.



Corollary 23.2

*LletG = (V,E) beaconnected, undirected graph with a real-valued
weight function w defined on E.

* Let A be a subset of E that is included in some minimum spanning
tree for G, and let C = (V., E;) be a connected component (tree) in
the forest G4 = (V, A).

* If (u, v) is a light edge connecting C to some other component in Gy,
then (u, v) is safe for A.



Kruskal



e Consider GENERIC-MST

e The set A is a forest

* The safe edge added to A is always a least-weight edge in the graph
that connects two distinct components.

* It uses a disjoint-set data structure to maintain several disjoint sets of
elements (contains the vertices in a tree).



MST-KRUSKAL

MST-KRUSKAL(G, w)
1. A< @
2. foreachvertexv € V[(G]

do MAKE — SET (v)
sort the edges of E into nondecreasing order by weight w
for each edge (u,v) € E, taken in nondecreasing order by weight

doif FIND — SET(u) # FIND — SET (v)

thend « A U {(u,v)}
UNION (u,v)

O 0N LA W

return A4



running time of Kruskal

* The running time of Kruskal’s algorithm fora graph ¢ = (V,E)
depends on the implementation of the disjoint-set data structure.

* We shall assume the disjoint-set-forest implementation of Section
21.3 with the union-by-rank and path-compression heuristics, since
it is the asymptotically fastest implementation known.

e disjoint-set operations take O (E a(V)) time
* sincea(|V]) = 0(lgV) = O(IgE),
* the running time of Kruskal’s algorithm : O(E 1g V).
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Prim



 Consider GENERIC-MST

* The set A forms a single tree

* The tree starts from an arbitrary root vertex r and grows until the tree
spans all the verticesin I/

* The safe edge added to A is always a least-weight edge connecting the tree
to a vertex not in the tree.

* The key to implementing Prim’s algorithm efficiently is to make it easy to
select a new edge to be added to the tree formed by the edges in A.

* min-priority queue(key[v] is the minimum weight of any edge connecting v to a
vertex in the tree)



MST-PRIM(G, w, 1)

1. foreachu € V|[G]
2 do key[u] « o
3. m|u] « NIL

4. keyl[r] <« 0
5.

6

7 dou < EXTRACT — MIN(Q)

8. foreachv € Adj[u]

9 doifv € Qandw(u,v) < key|v]
10. thent[v] « u

11 key[v] « w(u,v)



* The performance of Prim’s algorithm depends on how we implement
the min priority queue Q.

* Binary min-heap
OV lIgV + ElgV) = O(ElgV)
* Fibonacci heaps
cO(E+Vigl)
* Fibonacci heaps use amortized analysis



Example: MSP by Prim

(a)

(b)
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